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GEE WAH NG

Acoustic propagation delay has not been investigated for a con-

tinuous wave multistatic sonar tracking system except for the recent

study conducted by Jauffret et al. [6], which estimates the trajectory

of a constant velocity target. The results showed that the estimate

bias caused by the propagation delay is not negligible, especially

for a bistatic system. This paper develops an interacting multi-

ple model unscented Gauss-Helmert filter with numerical Jacobian

(IMM-UGHF-NJ) to track a maneuvering target with propagation

delay using a bistatic sonar system. The IMM-UGHF-NJ can over-

come the two tracking challenges introduced by the delay, namely,

implicit state transition model and lack of analytical expression of

the Doppler shifted frequency in the measurement model. Simula-

tion tests have been conducted, and the results show that the IMM-

UGHF-NJ can reduce the estimation error significantly, especially

for long range or fast moving targets.
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I. INTRODUCTION
Continuous active sonar (CAS), also known as high

duty cycle (HDC) sonar, with multistatic setup has at-

tracted the research interest recently. In such a system,

the signal is transmitted almost in a full duty cycle.

Compared to the commonly used pulse active sonar

(PAS) system, which transmits only a short pulse in

a cycle, the CAS system has continuous detection ca-

pability. Furthermore, a CAS usually uses low intensity

signal, so it is less disturbing to underwater fauna.

There are two main types of CAS systems according

to the signal waveforms transmitted, namely, frequency

modulated (FM) waveforms and continuous constant

frequency waveforms (CW). The FM-CAS can provide

good target bistatic range information, whereas the CW-

CAS has good Doppler shifted frequency measurement

(linked to target range rate). The FM-CAS needs to sep-

arate indirect path signal from strong direct path signal

via methods, such as m-sequence modulation [3] and

Dopplergram [10]. The FM-CAS has a frequency band-

width limitation issue in multistatic system, as broad-

band waveforms are transmitted repeatedly [5]. The

CW-CAS transmits a single fixed frequency waveform,

so that it has no frequency bandwidth limitation problem

as the FM-CAS. However, due to lack of range informa-

tion, the observability of a target trajectory in CW-CAS

is not as good as FM-CAS, especially for bistatic (a

single transmitter-receiver pair) system.

We focus on target tracking using CW-CAS in this

paper. A few approaches to this problem have been pro-

posed in literature. A Gaussian mixture probability hy-

pothesis density (GMPHD) filter was developed in [5].

It tracks multiple constant velocity (CV) targets using

bearings and Doppler frequencies detected by multi-

static CW-CAS. Results show that CV targets can be

tracked using more than two transmitter-receiver pairs

when target range is not available. This research does

not take signal propagation delay into consideration.

The effect of propagation delay of CW-CAS has been

studied in [6] recently. An exact Doppler frequency

model with propagation delay was proposed. and a max-

imum likelihood (ML) estimator based on this model

was developed to perform batch estimation1 for a CV

target. The simulation results showed that the estimation

bias induced by the propagation delay is not negligible,

especially for a bistatic system.

In this paper, the propagation delay problem raised

in [6] is studied further. We extend the target CV tra-

jectory estimation using a batch parameter estimation

technique to the dynamic recursive estimation, which

can handle not only CV motion but also maneuvering

motion. This extension faces two challenges. Firstly, the

“target time” tk and target position (xk,yk) in the state

1The batch estimation estimates target parameter using a batch of

measurements received in a certain duration. The target parameter

describes the target motion, for example, target initial position and its

velocity (assumed constant for the duration of the batch).
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[defined later in (1) and (2)] are highly correlated after

propagation delay is introduced. This leads to a state

transition equation in an implicit form instead of the

commonly used explicit form in [11][12]. Secondly, the

Doppler shifted frequency (one of the measurements)

does not have an analytical expression in terms of the

target state. This is because the Doppler frequency is

a function of the bistatic range rate which cannot be

described analytically after propagation delay is intro-

duced. Details will be given later in Section II-B. The

two challenges mentioned above were overcome in [6]

by solving a 2nd order polynomial equation for CV tar-

get. However, the approach in [6] cannot be applied to a

maneuvering target with coordinated turn (CT) motion,

and the new approach in this paper will be shown to

handle this.

A dynamic estimation problem uses two basic mod-

els, namely, the state transition model and the measure-

ment model. The state transition model describes the

evolution of the target state with time, and it is (in most

cases) an explicit expression of the state at the current

time in terms of the state at the previous time. The mea-

surement model relates the measurement to the state.

The two challenges of the dynamic estimation problem

considered in this paper are: (i) the implicit state tran-

sition model; (ii) the lack of an analytical measurement

model. These make this problem impossible to solve

using existing filters.

We will develop an interacting multiple model un-

scented Gauss-Helmert filter with numerical Jacobian

(IMM-UGHF-NJ) to cope with the challenges men-

tioned above. The IMM [2] is a well known hybrid al-

gorithm to handle motion model uncertainty in maneu-

vering target tracking. The UGHF [11][12][14][15] is a

recently developed algorithm for bearings-only tracking

(BOT) with implicit state transition model introduced

by the acoustic propagation delay. It can be applied to

our problem. For the measurement model without an-

alytical form, the NJ (numerical Jacobian) algorithm,

which computes the Jacobian numerically, can be uti-

lized [8][13][9]. The Doppler shifted frequency is a

function of the bistatic range rate, _r, which has no an-

alytical form due to the unknown time delay. We can

compute _r (derivative of range r) using the NJ.

The structure of the rest of paper is as follows.

Section II formulates the problem. Section III presents

the IMM-UGHF-NJ. Simulation results and conclusions

are in Sections IV and V, respectively.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. At dynamic

estimation cycle k, the transmitter emits a CW signal

with constant frequency fT at time tTk , and the receiver

receives the Doppler shifted frequency fR at time tRk
via the target reflection at time tk. We assume the

transmitter and receiver are stationary and located at

(xT,yT) and (xR,yR), respectively. The target is moving

Fig. 1. Signal transmission of CW bistatic sonar.

Fig. 2. Time sequences of continuous wave bistatic sonar.

and its location is [x(tk),y(tk)] at reflection time tk. The

ranges between the target at tk to the transmitter and

the receiver are rTk and r
R
k , respectively. We also assume

that sound propagation is straight with a nearly constant

speed among the transmitter, target and receiver.

The target states to be estimated for the CV and CT

models at time tk are

xCV(tk) = [x(tk) y(tk) _x(tk) _y(tk) tk]
0 (1)

xCT(tk) = [x(tk) y(tk) _x(tk) _y(tk) !(tk) tk]
0 (2)

where x, y, _x and _y are the target positions and velocities

in the x and y coordinates, respectively, ! is the target

turn rate, and tk is the target time (or reflection time)

corresponding to the emission time tTk and the reception

time tRk of the transmitter and receiver, respectively. The

measurement vector at time tRk is

z(tRk ) = [b(t
R
k ) fR(tRk )]

0 (3)

where b is the target bearing from the receiver at time tRk
to the target at time tk, measured clockwise from True

North, and fR is the Doppler shifted frequency at the

receiver.

A. State transition models

The state transition model describes the evolution

of the target state with time. For a generic discrete

problem, it is an explicit form given by

x(tk) = f[x(tk¡1)] +¡v(tk¡1) (4)

where k is the discrete estimation cycle index, v(tk¡1)
is the process noise, and ¡ is the process noise gain.

However, there is no explicit state transition model for
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our problem. It can be seen from Fig. 2 that the target

time, tk, is unknown due to the unknown propagation

delay ¿R. There is an implicit constraint between the

known tRk and unknown tk given by

tk = t
R
k ¡ ¿Rk (5)

where

¿Rk =

p
[x(tk)¡ xR]2 + [y(tk)¡ yR]2

cp
(6)

and cp is the signal propagation speed in the medium. It

can be seen that tk is on the both sides of the constraint

equation (5), since x(tk) and y(tk) are functions of tk. It is

difficult to obtain an explicit express of tk. This leads to

use a Gauss-Helmert (GH) state transition model, which

describes an implicit constraint systemically [11][12].

The GH model is given by

g[x(tk),x(tk¡1)] +¡v(tk¡1) = 0 (7)

The GH models for the CV motion2 and CT motion

are given next.

1) Constant velocity Gauss-Helmert model: The GH

model for CV motion is given by

gCV[xCV(tk),x
CV(tk¡1)] +¡

CVvCV(tk¡1) = 05 (8)

where 05 is a column vector with 5 elements, g
CV[¢]

is the implicit GH state transition function, which com-

bines the CV motion constraints and the delay constraint

between x(tk) and x(tk¡1). It is given by

gCV(¢) = [gCV1 (¢) gCV2 (¢) gCV3 (¢) gCV4 (¢) gCV5 (¢)]0 (9)

where

gCV1 (¢) = x(tk)¡ [x(tk¡1)+ _x(tk¡1)¢k] (10)

gCV2 (¢) = y(tk)¡ [y(tk¡1)+ _y(tk¡1)¢k] (11)

gCV3 (¢) = _x(tk)¡ _x(tk¡1) (12)

gCV4 (¢) = _y(tk)¡ _y(tk¡1) (13)

gCV5 (¢) = tk ¡ (tRk ¡ ¿Rk ) (14)

with ¿Rk given in (6) and

¢k = tk ¡ tk¡1 (15)

Based on the discrete white noise acceleration

(WNA) model [2], the gain matrix ¡CV and the zero-

mean white Gaussian process noise vCV in (8) compen-

sate for small accelerations and the uncertainty of the

2Although an explicit state transition model for the CV motion can

be obtained through solving a 2nd order polynomial equation [6], the

GH model is a systematical way which is suitable for both CV and

CT motions.

sound speed. The noise gain matrix ¡CV is given by

¡CV =

26666664

1
2
(¢k)

2 0 0

0 1
2
(¢k)

2 0

¢k 0 0

0 ¢k 0

0 0 1

37777775 (16)

The covariance of vCV is

qCV = diag(¾2ẍ ¾2ÿ ¾2t ) (17)

where ¾2ẍ and ¾2ÿ are the variances on small target

accelerations in the x and y coordinates respectively,

and ¾2t is the process noise variance on the target time.

The covariance of the error in the model (8) is given by

QCV(¢k) = ¡
CVqCV(¡CV)0 (18)

2) Coordinated Turn Gauss-Helmert model: The GH

state transition model for the CT motion is given by

gCT[xCT(tk),x
CT(tk¡1)] +¡

CTvCT(tk¡1) = 06 (19)

where

gCT(¢) = [gCT1 (¢) gCT2 (¢) gCT3 (¢) gCT4 (¢) gCT5 (¢) gCT6 (¢)]0

(20)

with

gCT1 (¢) = x(tk)¡
·
x(tk¡1)+

sin[!(tk¡1)¢k]
!(tk¡1)

_x(tk¡1)

¡1¡ cos[!(tk¡1)¢k]
!(tk¡1)

_y(tk¡1)
¸

(21)

gCT2 (¢) = y(tk)¡
·
y(tk¡1)+

sin[!(tk¡1)¢k]
!(tk¡1)

_y(tk¡1)

+
1¡ cos[!(tk¡1)¢k]

!(tk¡1)
_x(tk¡1)

¸
(22)

gCT3 (¢) = _x(tk)¡fcos[!(tk¡1)¢k] _x(tk¡1)
¡ sin[!(tk¡1)¢k] _y(tk¡1)g (23)

gCT4 (¢) = _y(tk)¡fsin[!(tk¡1)¢k] _x(tk¡1)
+ cos[!(tk¡1)¢k] _y(tk¡1)g (24)

gCT5 (¢) = !(tk)¡!(tk¡1) (25)

gCT6 (¢) = tk ¡ (tRk ¡ ¿Rk ) (26)

The noise gain matrix ¡CT is given by

¡CT =

26666666664

1
2
(¢k)

2 0 0 0

0 1
2
(¢k)

2 0 0

¢k 0 0 0

0 ¢k 0 0

0 0 ¢k 0

0 0 0 1

37777777775
(27)
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qCT = diag(¾2ẍ ¾2ÿ ¾2! ¾2t ) (28)

where ¾2! is the variance of the Gaussian process noises

of !. The covariance of the error in (19) for the (nearly)

CT motion, QCT(¢k), is computed by

QCT(¢k) = ¡
CTqCT(¡CT)0 (29)

B. Measurement model

The measurement model relates the state at time tk
to the measurement at time tRk , which is given by

z(tRk ) = h[x(tk)]+w(t
R
k ) (30)

where w(tRk ) is the measurement noise, and

h(¢) = [h1(¢) h2(¢)]0 (31)

with

h1(¢) = b(tRk ) = tan¡1
·
x(tk)¡ xR
y(tk)¡ yR

¸
(32)

h2(¢) = fR(tRk ) = fT(tTk )
·
1¡ _r(tRk )

cP

¸
(33)

The challenge is how to obtain _r(tRk ) in (33). We know

r(tRk ) = r
T
k + r

R
k

=

q
[x(tk)¡ xT]2 + [y(tk)¡ yT]2

+

q
[x(tk)¡ xR]2 + [y(tk)¡ yR]2 (34)

and

_r(tRk ) =
d[r(tRk )]

d(tRk )

=
_x(tk)[x(tk)¡ xT]+ _y(tk)[y(tk)¡ yT]

rTk

dtk
d(tRk )

+
_x(tk)[x(tk)¡ xR]+ _y(tk)[y(tk)¡ yR]

rRk

dtk
d(tRk )

(35)

When the signal propagation delay is negligible (for

example, for a radar signal), one has tk = t
R
k and

dtk
d(tRk )

= 1 (36)

The analytical form of _r(tRk ) is then

_r(tRk ) =
_x(tk)[x(tk)¡ xT]+ _y(tk)[y(tk)¡ yT]

rTk

+
_x(tk)[x(tk)¡ xR]+ _y(tk)[y(tk)¡ yR]

rRk
(37)

However, the acoustic signal in our problem has sig-

nificant propagation delay and tk 6= tRk . The analytical
function

tk = f(t
R
k ) (38)

is impossible to obtain for a target in CT motion. This

causes a major challenge for mapping the state to the

measurement. An appropriate filter to cope with this

challenge will be developed next.

III. INTERACTING MULTIPLE MODEL UNSCENTED
GAUSS-HELMERT FILTER WITH NUMERICAL
JACOBIAN

The IMM estimator [2] is the most commonly used

hybrid approach to handle model uncertainty in target

tracking. This section describes an IMM-UGHF-NJ fil-

ter with the implicit CV and CT models described in

Section II and lack of analytical expression for the mea-

surement function.

Similarly to the original IMM estimator, the IMM-

UGHF-NJ performs the state estimation in four steps:

mixing, mode-matched filtering, mode probabilities up-

dating and final state combination:

1) In the mixing step, the m hypotheses (where m is

the number of models in the filter) at time k¡ 1 ex-
pand to m2 hypotheses using the mixing probabilities

based on the mode Markov chain, which is governed

by the m£m mode probability transition matrix ¦

consisting of the mode transition probabilities, pij .

The m2 hypotheses are then merged into m hypothe-

ses based on the mixture equations [2].

2) In the mode-matched filtering step, the mixed state

estimates are updated by UGHF-NJs (given later) in

parallel.

3) The mixing probabilities are obtained, and the up-

dated mode probabilities are computed based on

the innovations in the mode-matched UGHF-NJs.

The updated mode probabilities together with the

mode-conditioned estimated states and covariances

are brought to the next step.

4) The final state estimate and its covariance for the

current time cycle are computed based on the mix-

ture equations using the latest mode probabilities in

the combination step.

Since the states in the CV and CT models described

in Section II have different dimensions, the unbiased

mixing approach [16] is applied in the IMM filter to

increase the CV state from 5 to 6. Before the mixing

step, the CV state estimate and its error covariance are

augmented with the turn rate information from the CT

model.

The IMM-UGHF-NJ differs from the standard IMM

in the mode-matched filters, which are UGHF-NJ.

The UGHF-NJ handles the implicit GH state transition

model and evaluates fR(tRk ) in the measurement vec-

tor (3) numerically. The UGHF-NJ prediction, state-to-

measurement mapping and update steps are given in

Algorithms 1—3, respectively. In these algorithms, the

model superscripts “CV” and “CT” for the states and

GH functions are omitted for simplicity.
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ALGORITHM 1 UGHF-NJ prediction

Generate (2nx+1) sigma points for x̂(tk¡1):
[fx̂i(t̂ik¡1)g,fwig] = SigPt[x̂(t̂k¡1),P(t̂k¡1),·]

Predict sigma points using Gauss-Newton algo.:
for all x̂i(t̂ik¡1), i 2 f1, : : : ,2nx+1g do
x0 = x̂

i(t̂ik¡1)
³xi(t̂ik j t̂ik¡1) = GaussN[g(x1,x0)]

end for
Regen sigma points with process noise:

x̂(t̂k j t̂k¡1) =
2nx+1X
i=1

wi³xi(t̂ik j t̂ik¡1)

P(t̂k j t̂k¡1) =
2nx+1X
i=1

wix̃i(t̂ik j t̂ik¡1)(x̃i(t̂ik j t̂ik¡1))0+Q(¢k)

[fx̂i(t̂ik j t̂ik¡1)g,fwig] =
SigPt[x̂(t̂k j t̂k¡1),P(t̂k j t̂k¡1),·]

where
x̃i(t̂ik j t̂ik¡1) = ³xi(t̂ik j t̂ik¡1)¡ x̂(t̂k j t̂k¡1)
· is a spread scalar of the sigma points.

Algorithm 1 predicts the state x̂(t̂k¡1) from time t̂k¡1
to an unknown target time, tk, corresponding to the
signal reception time tRk . The relationship between tk and
tRk is given by the implicit constraint (5). An unscented
Gauss-Helmert approach is used for the state prediction
with the implicit constraint. Firstly, 2nx+1 sigma points
of x̂(t̂k¡1) are generated using SigPt(¢) (given in the
Appendix), where nx is the dimension of the state vector.
Secondly, each sigma point is predicted to t̂ik using
the Gauss-Newton algorithm GaussN(¢) (also given in
the Appendix) based on the Gauss-Helmert function
g(x1,x0), where i is the index of the sigma points.
The 2nx+1 GaussN(¢) find x1 = ³xi(t̂ik j t̂ik¡1) from x0 =

x̂i(t̂ik¡1) iteratively. Thirdly, the predicted sigma points
are re-generated with considering also the process noise
(with the approprate larger prediction covariance).

ALGORITHM 2 UGHF-NJ mapping the predicted state
to measurement

[ftR,jk g,fwjg] = SigPt[tRk ,¾tR
k
,·]

for all x̂i(t̂ik j t̂ik¡1), i 2 f1, : : : ,2nx+1g do
x0 = x̂

i(t̂ik j t̂ik¡1)
for j = 1 : 3 do
x̂i,j(t̂

j
k j t̂ik¡1) = GaussN[g(x1,x0)jtR

k
=t

R,j

k

]

r̂i,j(tRk )Ã x̂i,j(t̂
j
k j t̂ik¡1)

end for

_̂r
i

(tRk ) = NJ[ftR,jk g,fr̂i,j(tRk )g,fwjg]
f̂R,i(tRk )Ã using (33)

b̂i(tRk )Ã using (32)

zi(tRk ) = [b̂
i(tRk ) f̂

R,i(tRk )]
0

end for

ẑ(tRk ) =

2nx+1X
i=1

wiẑi(tRk )

Algorithm 2 maps the predicted state to the mea-

surement space. The challenge here is that we cannot

obtain the Doppler shifted frequency fR(tRk ) in the mea-

surement from the predicted state directly. The range

rate _r(tRk ) in (33) cannot be derived from the bistatic

range r(tRk ), which has no analytical form in terms of

tRk . We use a numerical approach, called numerical Ja-

cobian (NJ), to obtain _r(tRk ) from r(tRk ). It is known that

the slope of the tangent line is the derivative of a non-

linear function at a point of interest. The principle of the

NJ(¢) (given in the Appendix) is to find the best linear fit
to a nonlinear function based on a few weighted points

around the point of interest. If we can provide these

weighted points around [tRk ,r(t
R
k )], its derivative _r(t

R
k ) can

then be computed using NJ(¢). Firstly, we generate the
reception time set around tRk using SigPt(¢), i.e.,

ftR,jk g= ftRk , tRk ¡¾tR
k
, tRk +¾tR

k
g j = 1,2,3 (39)

where ¾tR
k
is a very small shift from tRk . Its weight

set is fwjg. Secondly, we use GaussN(¢) to obtain the
predicted state set fx̂i,j(t̂k j t̂k¡1)g corresponding to the
reception time set ftR,jk g for the ith sigma point of
the predicted state (obtained from Algorithm 1). The

bistatic range can then be computed using (34). The

set of bistatic ranges corresponding to ftR,jk g for the ith
sigma point of the predicted state is

fr̂i,j(tRk )g= fr̂i(tRk ), r̂i(tRk ¡¾tR
k
), r̂i(tRk +¾tR

k
)g j = 1,2,3

(40)

Thirdly, we use these two sets, ftR,jk g and fr̂i,j(tRk )g,
which form three points around [tRk , r̂

i(tRk )] to evaluate

the range rate _̂r
i

(tRk ) using NJ(¢). Once _̂r
i

(tRk ) is obtained,

fR,i(tRk ) can be computed using (33), and the predicted

measurement zi(tRk ) follows.

ALGORITHM 3 UGHF-NJ update

x̂(t̂k) = x̂(t̂k j t̂k¡1)+Kkº(tRk )
P(t̂k) = P(t̂k j t̂k¡1)¡KkS(tRk )K0k
where

º(tRk ) = z(t
R
k )¡ ẑ(tRk )

Kk = PxzS(t
R
k )
¡1

S(tRk ) =R+Pzz

Pxz =

2nx+1X
i=1

wix̃i(t̂ik j t̂ik¡1)z̃i(tRk )0

Pzz =

2nx+1X
i=1

wi[z̃i(tRk )z̃
i(tRk )

0]

z̃i(tRk ) = ẑ
i(tRk )¡ ẑ(tRk )

x̃i(t̂ik j t̂ik¡1) = x̂i(t̂ik j t̂ik¡1)¡ x̂(t̂k j t̂k¡1)

Algorithm 3 updates the predicted state based on

the measurement z(tRk ). This step is the same as in the

conventional UKF.
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Fig. 3. Test scenarios.

IV. SIMULATION RESULTS

The IMM-UGHF-NJ is tested with simulated data

in this section. The simulated scenarios are shown in

Fig. 3. Twelve targets move in CV-CT-CV motion with

different speeds and ranges. They are categorised into

four groups based on the ranges (or distances) to the

transmitter and receiver, which are between 0—5 km,

5—10 km, 10—15 km and 15—20 km. Each category has

three targets with speeds 10 m/s, 20 m/s and 30 m/s,

respectively. All targets have two CV legs linked by a

CT arc. The durations of the first CV, CT and the sec-

ond CV are 90 s, 45 s and 90 s, respectively. The CT

arc is a 90± right turn with turn rate 2±/s. The trans-
mitter and receiver are located at (¡3500 m,0 m) and
(3500 m,0 m), respectively. The transmitter emits a CW

signal with frequency 1000 Hz. The sampling inter-

val of the receiver is T = 1 s. The measurement errors

of bearing and Doppler shifted frequency at receiver

are assumed Gaussians with standard deviations ¾b = 1
±

and ¾f = 0:25 Hz, respectively. The sound propagation

speed in water is cp = 1484 m/s.

The following two algorithms are used in testing:

² IMM-UKF: The mode-matched filters are UKF. They
estimate target position and velocity only. The prop-

agation delay is not taken into consideration at all.

The Doppler shifted frequency in the measurement

model is based on (37) which is commonly used in

multistatic radar tracking system. The target times are

taken as the signal reception times by the receiver.

² IMM-UGHF-NJ: This is the new algorithm proposed

in this paper. The propagation delay is taken into

consideration in the state estimation, and the target

times attached to the target trajectory are estimated

from multiple UGHF-NJs.

One CV model and two CT models (CT-L and CT-

H) are used in both IMM estimators. The CT-L and CT-

H have low and high turn rate process noises, respec-

tively. This setup can provide a fast turn rate adaptation

during model switching [4]. The initial mode proba-

bilities for the three models are 1/3. The probability

transition matrix ¦3 is

¦3 =

2640:950 0:025 0:025

0:025 0:950 0:025

0:025 0:025 0:950

375 (41)

The measurement error covariance R is

R= diag[(1±)2 (0:25 Hz)2] (42)

In the IMM-UGHF-NJ, the process noise covariances

qCV, qCT-L and qCT-H are, respectively,

qCV = diag[(0:1 m/s2)2 (0:1 m/s2)2 (0:1s)2] (43)

qCT-L = diag[(0:1 m/s2)2 (0:1 m/s2)2 (0:1±=s)2 (0:1s)2]
(44)

qCT-H = diag[(0:1 m/s2)2 (0:1 m/s2)2 (1±=s)2 (0:1s)2]
(45)

and · is set to 1 in all SigPt(¢) (see the Appendix),
and ¾tR

k
is set to 0.1s in Algorithm 2. The initial state

estimates are

x̂CV(t0) = [r̂0 sinb0 r̂0 cosb0 _̂x0 _̂y0 t̂0]
0 (46)

x̂CT-L(t0) = [r̂0 sinb0 r̂0 cosb0 _̂x0 _̂y0 0:1
±=s t̂0]

0 (47)

x̂CT-H(t0) = x̂
CT-L(t0) (48)

where

r̂0 »N (rR0 ,¾2r ) (49)

b0 = b(t
R
0 ) (50)

_̂x0 »N ( _x0,¾2_x ) (51)

_̂y0 »N ( _y0,¾2_y ) (52)

t̂0 = t
R
0 ¡ r̂0=cp (53)

with rR0 the true value of the range from the target at

time t0 to the receiver at time t
R
0 , ¾r = 400 m, and b(t

R
0 )

is the measured bearing at time tR0 , _x0 and _y0 are the true

target velocities, and ¾ _x = ¾ _y = 4 m/s. The initial state

error covariances for the three models are

PCV(t0) =

266666664

Pxx Pxy 0 0 0

Pyx Pyy 0 0 0

0 0 ¾2_x 0 0

0 0 0 ¾2_y 0

0 0 0 0 (¾r=c
p)2

377777775
(54)
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PCT-L(t0) = P
CT-H(t0)

=

26666666664

Pxx Pxy 0 0 0 0

Pyx Pyy 0 0 0 0

0 0 ¾2_x 0 0 0

0 0 0 ¾2_y 0 0

0 0 0 0 (0:02±=s)2 0

0 0 0 0 0 (¾r=c
p)2

37777777775
(55)

where

Pxx = (r̂0¾b cosb0)
2 + (¾r sinb0)

2 (56)

Pyy = (r̂0¾b sinb0)
2 + (¾r cosb0)

2 (57)

Pxy = Pyx = (¾
2
r ¡ r̂20¾2b)sinb0 cosb0 (58)

The parameters in the IMM-UKF, including the process

noise covariances, initial states and initial state error

covariances are the same as the IMM-UGHF-NJ, but the

elements corresponding to the target time are removed.

The simulation results present the root mean square

errors (RMSE) of the estimated target positions and

speeds obtained from 100 Monte Carlo runs. The es-

timated position and speed errors at time t̂k are com-

puted by

poserr(t̂k) =

q
[x̂(t̂k)¡ x(t̂k)]2 + [ŷ(t̂k)¡ y(t̂k)]2 (59)

sperr(t̂k) =

q
[ _̂x(t̂k)¡ _x(t̂k)]2 + [ _̂y(t̂k)¡ _y(t̂k)]2 (60)

where x̂(t̂k), ŷ(t̂k), _̂x(t̂k) and _̂y(t̂k) are the estimated tar-

get positions and velocities in the x and y coordinates

respectively, x(t̂k), y(t̂k), _x(t̂k) and _y(t̂k) are the true tar-

get positions and velocities in the x and y coordinates

respectively, and t̂k is the estimated target time in esti-

mation cycle k.

Tables I and II show the averages of position and

speed RMSE for the two algorithms for the twelve

simulated targets from the four categories displayed in

Fig. 3. Figs. 4—7 show the position RMSE versus time

of the two algorithms for four simulated targets, one

from each category, respectively. They are the targets

in the range between 0—5 km with speed 30 m/s, range

between 5—10 km with speed 10 m/s, range between

10—15 km with speed 20 m/s and range between 15—

20 km with speed 30 m/s. It can be seen that the IMM-

UGHF-NJ outperforms the IMM-UKF for all targets.

The accuracy improvement is target range and speed

dependent. A faster and longer range target has more

improvement than a slower one at a shorter range.

This is because that estimation error of the IMM-UKF

depends on the target speed and propagation delay ¿Rk
(details can be found in Section V-C of [12]). The range

from the target to the receiver is proportional to the

propagation delay. From the results we can say that the

TABLE I

Averages of position RMSE

Target Target

Range Speed IMM-UKF IMM-UGHF-NJ Improv.

(km) (m/s) (m) (m) (m)

0—5 10 412.6 411.9 0.7

20 397.9 375.4 22.5

30 319.3 281.8 37.5

5—10 10 406.5 400.8 5.7

20 387.4 336.0 51.4

30 438.4 325.2 113.2

10—15 10 413.1 401.5 11.6

20 489.9 428.2 61.7

30 523.0 369.7 153.3

15—20 10 436.8 412.7 24.1

20 481.0 407.5 73.5

30 614.2 399.5 214.7

TABLE II

Averages of speed RMSE

Target Target

Range Speed IMM-UKF IMM-UGHF-NJ Improv.

(km) (m/s) (m/s) (m/s) (m/s)

0—5 10 1.9 1.8 0.1

20 2.4 2.0 0.4

30 2.9 2.4 0.5

5—10 10 2.0 1.8 0.2

20 2.7 1.9 0.8

30 3.8 2.1 1.7

10—15 10 2.4 1.9 0.5

20 3.5 1.9 1.6

30 5.0 2.2 2.8

15—20 10 3.0 2.4 0.6

20 4.3 2.0 2.3

30 6.2 2.1 4.2

estimation error without considering propagation delay

is significant, especially for a long range target or a fast

target (such as a speed boat or torpedo).

The maneuvering mode probabilities of the two

IMM filters are also investigated. Figs. 8—11 show the

sum of the mode probabilities of the two CT models

(which represents the target maneuvering probability)

versus time for the four targets, respectively. It can be

seen that the maneuvering probability for both filters

increases when the target is maneuvering. The IMM-

UGHF-NJ reacts faster than the IMM-UKF. A delay in

the model switching for a long range target (> 5 km)

is observed. However, the mode probability does not

match the ground truth very well when the target is

in CV motion. This is because the turn rate ! in CT

models can adapt to a small value when the target is in

CV motion.

To evaluate the consistency of the IMM-UGHF-NJ

and IMM-UKF, the average normalized estimation error

squared (NEES) is evaluated. The average (2D) position
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Fig. 4. Position estimate RMSE versus time for the target with

speed = 30 m/s and range less than 5 km.

Fig. 5. Position estimate RMSE versus time for the target with

speed = 10 m/s and range 5—10 km.

Fig. 6. Position estimate RMSE versus time for the target with

speed = 20 m/s and range 10—15 km.

Fig. 7. Position estimate RMSE versus time for the target with

speed = 30 m/s and range 15—20 km.

Fig. 8. Maneuvering probability versus time for target with

speed = 30 m/s and range less than 5 km.

Fig. 9. Maneuvering probability versus time for target with

speed = 10 m/s and range 5—10 km.
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Fig. 10. Maneuvering probability versus time for target with

speed = 20 m/s and range 10—15 km.

Fig. 11. Maneuvering probability versus time for target with

speed = 30 m/s and range 15—20 km.

NEES at time t̂k for N Monte Carlo runs is [1]

²̄(t̂k) =
1

2N

NX
i=1

x̃i1:2(t̂k)
0[Pi1:2,1:2(t̂k)]

¡1x̃i1:2(t̂k) (61)

where i the run index, Pi1:2,1:2(t̂k) is the position estimate

error covariance submatrix at the estimated target time

t̂k, and

x̃1:2(t̂k) = x̂1:2(t̂k)¡ x1:2(t̂k) (62)

The two-sided 95% probability region for a 200 degrees

of freedom (N = 100, dimension of x1:2 = 2) chi-square

random variable is [162,241:2]. Dividing by 200, the

average NEES interval is [0:81,1:21].

Fig. 12 shows the average position NEES versus

time of the IMM-UGHF-NJ for the four targets with

expected value 1. It can be seen that most of the position

NEES are within the interval [0:81,1:21]. There are

two exception cases out of the interval. One is at the

model switching times which are around 90 s and 135 s.

Fig. 12. Four targets position NEES versus time for the

IMM-UGHF-NJ.

Fig. 13. Four target position NEES versus time for the IMM-UKF.

Another one is at the ending part of the near range

target (0—5 km, 30 m/s). When the target is switching

between the CV and CT motions, the IMM-UGHF-

NJ cannot adapt to the correct model immediately,

and this causes short delay in the maneuver start and

maneuver end, but these delays are shorter than for

the IMM-UKF. For the near range target (0—5 km,

30 m/s), the NEES is below the lower bound 0.81 at

the ending part (t > 160 s). We can observe from Fig. 8

that the maneuvering probability is greater than 0.24

when t > 160 s. It is apparently worse than for the

other three targets shown in Figs. 9—11. This is caused

by the marginal observability of the CV motion model

from the measurements, and results in the maneuvering

probability (sum of the probabilities of CT models) not

small enough. The error covariance of the combined

estimate is too large (pessimistic) when the contribution

of the incorrect models (the maneuvering models with

probability around 0.25) cannot be overlooked. The

small NEES is therefore caused by this large error
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Fig. 14. Position estimate RMSE versus time of the

IMM-UGHF-NJ using two-model and three-model for the target

with speed = 20 m/s and range 10—15 km.

Fig. 15. Position estimate RMSE versus time of the

IMM-UGHF-NJ using two-model and three-model for the target

with speed = 30 m/s and range 15—20 km.

covariance.

Fig. 13 shows the NEES of the IMM-UKF for the

same four targets. All of them are above the upper

bound 1.21. Obviously, the IMM-UKF provides biased

estimation without considering propagation delay.

We also compare the results of using three models

and two models in the IMM-UGHF-NJ. The models

and parameters in the three-model configuration have

been defined before. The two-model IMM-UGHF-NJ

uses one CV model and one CT model. Their initial

mode probabilities are 1/2, and the probability transition

matrix ¦2 is

¦2 =

·
0:95 0:05

0:05 0:95

¸
(63)

The process noises the initial states in the two-model

estimator are set as the same for the CV and CT in the

three-model case, except the process noise variance on

turn rate is set as (0:5±=s)2 (intermediate value between
those in the CT-L and CT-H models). Figs. 14 and 15

show the position estimate RMSE versus time of us-

ing two models and three models for the two targets

(10—15 km, 20 m/s and 15—20 km, 30 m/s). It can be

seen that there is no difference in the first leg (t < 90 s)

between two-model and three-model IMM-UGHF-NJs.

Once the targets start maneuvering, the three-model

IMM-UGHF-NJ outperforms the two-model version.

This is due to the model CT-H with high process noise

on the turn rate. It allows the turn rate to adapt to the

correct value quickly during model switchings. Mean-

while, the CT-L model with slow change in turn rate

can balance the CT-H after model switching.

V. CONCLUSIONS

This paper developed the IMM-UGHF-NJ filter to

track maneuvering targets using bistatic CW-CAS in

the presence of propagation delay. The IMM-UGHF-

NJ can overcome the two challenges of this tracking

problem, namely, the implicit state transition model and

absence of analytical expression of the Doppler shifted

frequency in the measurement model. Simulation tests

were conducted on targets with different ranges and

speeds. Results show that the IMM-UGHF-NJ outper-

forms the IMM-UKF which does not take the propaga-

tion delay into consideration. It is also found that the

estimate accuracy improvement of the IMM-UGHF-NJ

over the IMM-UKF is more significant for a longer

range or a higher speed target. Such a target (for ex-

ample a speed boat or a torpedo) needs an appropri-

ate filter (IMM-UGHF-NJ) to handle the propagation

delay. A statistical study of the results was also con-

ducted through the NEES. The results show that the

IMM-UGHF-NJ is a consistent filter in most of the

cases, except the situations when the target motion un-

certainty cannot be well observed from measurements.

The NEES results of the IMM-UKF are far above the

upper bound because of its biased estimation due to

ignoring the propagation delay.

Although the IMM-UGHF-NJ is developed based on

the stationary transmitter and receiver, it can be applied

to a moving transmitter and receiver if their positions are

known accurately. Further study will be conducted to

cope with inaccurate transmitter and receiver positions.

APPENDIX

The three algorithms SigPt(¢), GaussN(¢) and NJ(¢)
used in IMM-UGHF-NJ are given next.

a) SigPt(¢) generates the sigma points for a random
variable x with covariance Px [7].

[xi,wi] = SigPt(x,Px,·) i= 1, : : : ,2nx+1 (64)
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where

x1 = x (65)

xi = x+
hp
(nx+·)Px

i
i¡1

i= 2, : : : ,nx+1 (66)

xi = x¡
hp
(nx+·)Px

i
i¡nx¡1

i= nx+2, : : : ,2nx+1 (67)

w0 =
·

nx+·
i= 1 (68)

wi =
1

2(nx+·)
i= 2, : : : ,2nx+1 (69)

where nx is the dimension of x,
£p
(nx+·)Px

¤
i¤ indi-

cates the i¤th column of the matrix [¢], and · is a scalar
that determines the spread of sigma points.

b) GaussN(¢) is a Gauss-Newton algorithm to ob-

tain the solution of an implicit equation g(¢) = 0 itera-
tively [11][12] and yields

x̂1 = GaussN[g(x1,x0)] (70)

where x0 is known. The iteration procedure is

x̂
j+1
1 = x̂

j
1¡ (Aj)¡1g(x̂j1,x0) (71)

where j is the iteration index, Aj is the Jacobian matrix

defined by

Aj =
@g[(x̂

j
1,x0)]

@x̂
j
1

(72)

c) NJ(¢) calculates the Jacobian (or derivative) H of

a function

z= h(x) (73)

at a point of interest x0 numerically [8][13][9]. There

is no analytical form for h(¢), but z can be obtained
through numerical method from a given x. The Jaco-

bian is

H=NJ[fxig,fzig,fwig] (74)

where fxig is the sigma point set around x0 generated
from a very small covariance, fzig is its corresponding
set after transformation and fwig is the set of weights.
The NJ is implementing through the following steps:

1) Form the sigma point set

X̄=

·
x1 x2 ¢ ¢ ¢ x2nx+1

1 1 ¢ ¢ ¢ 1

¸
¡
·
x1

0

¸
(75)

Z=

266664
z̄1

z̄2

...

z̄l

377775= [z1 z2 ¢ ¢ ¢ z2nx+1] (76)

where x1 = x0, and l is the dimension of z.

2) Estimate H using the weighted least squares

(WLS) algorithm

aj = (X̄WX̄0)¡1X̄W(z̄j)0 (77)

ˆ̄
H= [a1 a2 ¢ ¢ ¢ al]0 (78)

Ĥ=
ˆ̄
H(1 : l,1 : nx) (79)

whereW= diag(fwig), j 2 f1, : : : , lg, and Ĥ is ˆ̄Hwithout
the last column.
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